Accuracy and Stability of the Null Space Method for Solving the Equality Constrained Least Squares Problem
نویسندگان
چکیده
The null space method is a standard method for solving the linear least squares problem subject to equality constraints (the LSE problem). We show that three variants of the method, including one used in LAPACK that is based on the generalized QR factorization, are numerically stable. We derive two perturbation bounds for the LSE problem: one of standard form that is not attainable, and a bound that yields the condition number of the LSE problem to within a small constant factor. By combining the backward error analysis and perturbation bounds we derive an approximate forward error bound suitable for practical computation. Numerical experiments are given to illustrate the sharpness of this bound.
منابع مشابه
Superlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis
We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...
متن کاملA Boundary Meshless Method for Neumann Problem
Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...
متن کاملPositive solution of non-square fully Fuzzy linear system of equation in general form using least square method
In this paper, we propose the least-squares method for computing the positive solution of a $mtimes n$ fully fuzzy linear system (FFLS) of equations, where $m > n$, based on Kaffman's arithmetic operations on fuzzy numbers that introduced in [18]. First, we consider all elements of coefficient matrix are non-negative or non-positive. Also, we obtain 1-cut of the fuzzy number vector solution of ...
متن کاملExact and approximate solutions of fuzzy LR linear systems: New algorithms using a least squares model and the ABS approach
We present a methodology for characterization and an approach for computing the solutions of fuzzy linear systems with LR fuzzy variables. As solutions, notions of exact and approximate solutions are considered. We transform the fuzzy linear system into a corresponding linear crisp system and a constrained least squares problem. If the corresponding crisp system is incompatible, then the fuzzy ...
متن کاملAn efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems
Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...
متن کامل